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This position paper proposes the OmpSs programming model and the Nanos++ run time as 
potential components for the exascale software stack.  
 
The OmpSs [5] programming model extends the OpenMP task directives with a unified mechanism 
to enable the exploitation of intertask dependencies and locality aware scheduling policies by the 
runtime. Data access directionality clauses (in, out, inout) for tasks provide the information required 
by the system to support dependencies and locality optimizations. The main logic of the program 
that orchestrates the chaining of task is in itself a valid sequential program form which the system 
extracts the potential concurrency and data access or movements required. The programming 
model provides the right decoupling between programs and systems, letting developers focus on 
algorithms and science and the runtime on optimizing the usage of the resources and how the 
programs are mapped to them.  
 
OmpSs aims at an elegant single source solution for programmers to achieve very good 
performance of a wide variety of system architectures. When targeting heterogeneous systems, 
several implementations for a given task can be provided by the programmer or used from libraries. 
The system can dynamically choose the appropriate task implementations and schedules, adapting 
to the changes in application characteristics and resources availability and performance. 
 
OmpSs is a “node” level programming model that nicely integrates into MPI in a hybrid 
programming approach [9]. MPI+OmpSs has the potential to extend to the global extreme scale 
execution the asynchronous model that it implements within a node, This naturally provides a huge 
potential for overlap between communication and computation and to highly relax the often too 
synchronous structure of MPI applications. Besides enabling higher overall efficiency (tolerance to 
latency and bandwidth limitation) it is also a very useful mechanism to fight OS and network noise. 
Further integration with other cluster level models such as other PGAS models should also be 
considered. Many of the same issues would also appear, but using some of the additional flexibility 
they provide in some of the solutions would be beneficial. 
 
Different implementations of the Nanos++ runtime have been developed targeting different 
platforms. They allow the execution of the single address space user level model on shared 
memory nodes (SMP/NUMA) on nodes with one or multiple accelerators (GPUs[1], work ongoing 
on FPGA) and even small clusters each of them with multicore and accelerator based nodes [8]. 
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Figure 1: Scalability  (Kparts/s) of the same OmpSs nbody code run on (a) a node with one to four GPUs (TESLA 2050) 
and (b) a cluster with upt to 8 nodes each of them equiped with two GPUs (TESLA 2090).  

Figure 1 shows how a single source code of an nbody simulation scales on different target 
configurations. The source code has been derived from the nbody example un the NVIDIA 



distribution by eliminating all CUDA memory allocation and data transfer, leveraging the CUDA 
kernel and annotating with OmpSs pragmas a loop that applies the kernel to blocks of particles. The 
resulting OmpSs code has 11 lines (not counting the kernel) while the corresponding part in the 
original CUDA code has 14 lines. The resulting OmpSs code can run and scales on multiple GPUs 
within a single node or a cluster with GPUs on each node while the original CUDA code can only 
run in one GPU 
 
Extensive ongoing research is ongoing on the model itself (pragmas) and how it fits real large scale 
applications as well as on the runtime. In particular looking at implementations targeting different 
platforms (from general purpose muticores to different accelerators and FPGAs, integration of 
CUDA, OpenCL and OpenACC), different scheduling plugins in particular looking at locality 
optimization and dynamic auto tuning selecting the most appropriate among multiple 
implementations of a task. Work is also done on fine grain load balance of MPI+OmpSs 
applications[10], where the runtimes of different processes in the same node coordinate and 
interact with the underlying OS kernel to dynamically migrate cores between processes when 
synchronizing MPI calls are reached. 
 
Challenges addressed: The OmpSs jointly addresses programmability/portability and performance 
at very large scale by enabling the efficient exploitation of multicore nodes (whose growth is a main 
contributor to the global growth in scale required to address the exascale).  
 
Maturity: The OmpSs model is being developed at the Barcelona Supercomputing Center and 
supersedes all previous developments under the generic name of StarSs (CellSs[1], SMPSs[2], 
GPUSs[4]) integrating in a single infrastructure the techniques for which evidence on their 
usefulness has been gained over the past 6 years. The references section enumerates some of the 
publications during this period. A fairly stable structure is available, being used for large scale 
scientific applications within the Text, Montblanc and DEEP projects of the EU exascale call. The 
infrastructure is open source and accessible from http://pm.bsc.es. 
 
Uniqueness: OmpSs originates from the vision that the extreme needs of very large scale systems 
pose. Such needs drive the deep focus of OmpSs on the fundamental issues such as how to 
convey to the runtime abstract information that describes the structure, characteristics and real 
needs of the algorithms/programs without being target machine specific. 
 
Novelty: Research work leading to the OmpSs proposal and infrastructure started at BSC around 
2004 and still there is a whole lot of potential to explore both in terms of definition of the 
programming model interface and in the development of intelligence in the runtime. The ideas being 
used draw form the superscalar processor design and data flow research. The big novelty of the 
model is to make those functionalities available for programmers in an environment very similar to 
what they are used to (a sequential imperative language plus directives) and to enable the 
application of techniques developed in the past under totally new scales and constraints. For 
example, instead of being limited to 200 instructions in flight or renaming a few tenths of registers 
as superscalar processors do, the OmpSs runtime can handle 20000 or more tasks in flight or 
rename megabytes of data. Several orders of magnitude increase in the scale of what can be done 
certainly motivates new solutions. Revolution can be as simple as reconsidering old ideas under 
totally new eyes and scales. 
 
Applicability: Even if originating from HPC and exascale needs, OmpSs aims at providing general 
purpose solutions for multicore programming. Thus OmpSs will be useful at other scales (petascale 
departmental, personal laptop or even mobile devices as multicores are now pervasive) and 
application areas (data analytics, non numeric, gaming, …). 
 
Effort: Developing a programming model and runtime is a continuous and daunting effort. Different 
teams can contribute both on the compiler and runtime side. Basic development and maintenance 
teams might require around 5 engineers for compiler and 8 engineers for the different runtime 
topics and targets. 
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